http://www.seafoodcrc.com/components/com_gk2_photoslide/images/thumbm/13664285_day_old_Southern_Blue_Fin_Tuna.jpg http://www.seafoodcrc.com/components/com_gk2_photoslide/images/thumbm/285728Sunset_on_Kangaroo_Island__South_Australia.jpg http://www.seafoodcrc.com/components/com_gk2_photoslide/images/thumbm/687877A_net_full_of_permium_Australian_grown_farmed_prawns.jpg http://www.seafoodcrc.com/components/com_gk2_photoslide/images/thumbm/211679Australian_grown_Abalone__fresh_from_the_sea.jpg http://www.seafoodcrc.com/components/com_gk2_photoslide/images/thumbm/835958Commercially_produced_oysters.jpg http://www.seafoodcrc.com/components/com_gk2_photoslide/images/thumbm/889625Freshly_cooked_farmed_Australian_prawns.jpg http://www.seafoodcrc.com/components/com_gk2_photoslide/images/thumbm/412638Rock_Lobsters_boxed_and_ready_for_market.jpg http://www.seafoodcrc.com/components/com_gk2_photoslide/images/thumbm/128520A_full_pot_of_Rock_Lobsters.jpg http://www.seafoodcrc.com/components/com_gk2_photoslide/images/thumbm/682031View_from_the_SARDI_research_vessel__the_Ngerin.jpg http://www.seafoodcrc.com/components/com_gk2_photoslide/images/thumbm/856347Yellow_Tail_King_fish.jpg

memberlogin



2011/734 Controlling biofouling of pond aerators on marine prawn farms
View Image


2011/734 Controlling biofouling of pond aerators on marine prawn farms



By David Mann

 

 

Biofouling of aeration equipment is a significant farm management issue and production cost for Australian marine prawn farms. Defouling aeration equipment has a high labour demand and once fouled, the energy efficiency of paddle-wheels and other aerating equipment can be markedly reduced, leading to elevated electricity costs and shorter equipment life. The estimated cost of biofouling is a minimum of $1,000 per hectare per crop when considering the additional labour, maintenance and electricity costs that it creates.

The project was designed to assist the Australian prawn farming industry improve aeration efficiency through providing farms with new information pertinent to cost-efficient management of their aerator fleet. The project focussed on the impact of biofouling on aeration and measures to control its accumulation, though broader aspects of aeration were also considered.

On-farm monitoring of aerators determined a huge variation in aerator electrical performance within and among farms. Around 60% of the electrical use variability among paddlewheels is due to biofouling accumulation. This also means that around 40% of differences among paddlewheels is attributable to mechanical factors such as degree of wear and tear.

The overarching output from the research conducted under this project is an improved understanding and quantification of the problem of biofouling in the use of aerators in marine prawn ponds. Farms are under pressure to become increasingly efficient production systems and the information arising from this project will substantially contribute to the farm knowledge base drawn on to optimise strategies that reduce aerator fleet management costs.